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Objectives Exposure-response trends in occupational studies of chronic disease are often modeled via log-linear
models with cumulative exposure as the metric of interest. Exposure levels for most subjects are often unknown,
but can be estimated by assigning known job-specific mean exposure levels from a sample of workers to all
workers. Such assignment results in (nondifferential) measurement error of the Berkson type, which does not bias
the estimate of exposure effect in linear models but can result in substantial bias in log-linear models with
dichotomous outcomes. This bias was explored in estimated exposure-response trends using cumulative exposure.
Methods Simulations were conducted under the assumptions that (i) exposure level is assigned to all workers
based on the job-specific means from a sample of workers, (ii) exposure level and duration are log-normal, (iii) the
true exposure-response model is log-linear for cumulative exposure, (iv) the disease is rare, and (v) the variance of
job-specific exposure level increases with its job-specific mean.

Resuills Assignment of job-specific mean exposure levels from a sample of workers causes an upward bias in the
estimated exposure-response trend when there is little variance in the duration of exposure but causes a downward
bias when duration has a large variance. This bias can be substantial (eg, 30—50%).

Conclusions Berkson errors in exposure result in little bias in estimating exposure-response trends when the
standard deviation of duration is approximately equal to its mean, which is common in many occupational studies.
No bias occurs when the variance of exposure level is constant across jobs, but such conditions are probably
Uncommon.

Key terms cumulative exposure, measurement error, occupation.

Cumulative exposure is often used as the exposure met-
ric in modeling exposure-response trends for chronic dis-
case. In many studies the exposure level for most or all
subjects is not measured but is instead assigned based on
measurements of a sample of subjects. In many occupa-
tional studies, for example, most workers may have been
exposed in the past when no measurements were taken.
Current measurements can be made on a sample of cur-
rent workers in a variety of jobs, and the job-specific
averages from the current measurements can then be as-
signed to all the workers in these jobs, including past
workers, as long as exposures can be assumed to have
remained constant over time. If changes in exposure
level are likely over time, then the changes can be

estimated and the assigned exposure levels can be ad-
justed accordingly.

Assigning exposure level using the means for specif-
ic jobs necessarily results in (nondifferential) error in the
assigned exposure level compared with the true exposure.
The resulting errors conform to a Berkson error model,
in which the true exposure level in a given job category
can be assumed to vary randomly about the assigned level
or “observed” level (1, 2),

CXPOSUIEy, = CXPOSULE jpseryed +E

In this case the error is independent of the observed
exposure and is, consequently, positively correlated with
the true exposure (eg, the larger the true exposure, the
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larger the error). This situation is in contrast to the clas-
sical error model, in which the error is independent of
the true exposures (and usually assumed to be normally
distributed) (1),

EXPOSUIE peoryeq = CXPOSULE,, + E.

An example of classical measurement error would be
when measurements are made on all workers in a study
and exposure is assigned to each worker according to the
measurements (eg, radiation levels taken from a radia-
tion badge). Such complete data on exposure is uncom-
mon in occupational epidemiology, particularly in retro-
spective studies.

It is well known that, in linear models with continu-
ous disease outcomes, the effect of classical errors in
measuring exposure causes a bias towards the null in the
estimated effect of exposure (ie, in estimating exposure-
response trends). It is also well known that in the case of
Berkson errors the estimate of the exposure-response
trend will be unbiased, although the variance of the esti-
mate will be affected (1). Seixas et al (3) have discussed
the assignment of job-specific arithmetic means (leading
to Berkson errors) in the linear case, without taking into
consideration duration of exposure. Armstrong (4, 5) pro-
vides useful reviews of measurement errors in general.

In log-linear models with dichotomous disease out-
comes, unlike the linear case, it has been shown theoret-
ically that Berkson measurement error can result in bias
either towards or away from the null in estimating expo-
sure-response trends (6, 7). Deddens & Hornung (7)
showed that bias was generally away from the null when
(i) the disease was rare, (ii) the true exposure level was
distributed log-normally, and (iii) the error variance in-
creased with increasing exposure level. These are com-
meon conditions in occupational epidemiology. Chronic
diseases are frequently rare, and exposures are typically
distributed log-normally. The third condition will also
occur, for example, in a situation in which the variance
of the job-specific exposure level is assumed to increase
with the job-specific mean exposure level and the job-
specific mean exposure levels from a sample of workers
are used to assign exposure level to all workers within a
specific job. A positive correlation between the job-spe-
cific variance of exposure level and the job-specific mean
is common in occupational studies. For example, in sili-
ca exposure data across 133 different jobs in 4 industrial
sand plants, where multiple measurements were taken per
job, the correlation coefficient between the job-specific
mean and job-specific variance was 0.68 (P=0.0001) (8).

Deddens & Hornung (7) considered only exposure
level, without consideration of duration of exposure. The
use of cumulative exposure (the sum of duration times
the exposure level across all jobs) brings a second varia-
ble (duration) into the problem. The distribution of the
assigned cumulative exposure then depends on the
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distribution of the duration of exposure, as well as the
distribution of the exposure level. The duration of expo-
sure in many occupational studies is known with little or
no error; for example, it can be obtained from company
personnel records. The observed duration of exposure can
be reasonably assumed to be log-normally distributed,
given that there is usually a long right-sided tail to the
distribution with a few workers exposed for a long peri-
od of time.

We have conducted simulations to explore potential
bias further in the estimate of exposure effect when cu-
mulative exposure is the exposure metric of interest and
when job-specific exposure levels are assigned to all
workers based on job-specific means from a sample of
workers.

Methods

Basic mods!

In each simulation we considered 30 000 study subjects,
10 000 in each of 3 jobs. The workers were assumed to
have remained in the same job over time. Duration of
exposure was assumed to be measured without error and
to be log-normally distributed, with a mean of 0.5 years
and a standard deviation ranging from 0.1 to 0.9, depend-
ing on the simulation.

For each simulation, we generated 30 000 durations
and assigned them randomly to each worker.

True exposure level for each job was assumed to be
distributed log-normally with means of 1, 2, or 3, with
standard deviations increasing across jobs (eg, 0.7, 1.4,
and 2.1, respectively). We assigned a true exposure lev-
el to each subject for each simulation by generating
10 000 exposure levels for each job and randomly assign-
ing to the 10 000 workers in that job.

The true cumulative exposure for each subject was
then created by multiplying the duration and true expo-
sure level for each subject.

Disease status was then assigned to each subject. The
assignment was done by assuming a true cumulative ex-
posure-response trend for a dichotomous outcome, as
well as a binomial (logistic) model. The exposure coef-
ficient (B,) was chosen arbitrarily to be 0.6. The inter-
cept (By) was chosen (-4.0) to result in a rare disease
(5%). The true cumulative exposure-response model for
all the simulations was therefore:

Log (p/(1-p)lx) = -4.0 + 0.6%x
or
p=1/{1 +exp(4.0- 0.6x)},

where p was the probability of disease and x was the true
cumulative exposure. Given the known true exposure, a
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probability of disease was then calculated for each sub-
ject. On the basis of the specific probability, each sub-
ject was randomly assigned either 1 or 0 (disease or non-
disease) using an SAS function (RANBIN) (9).

We then constructed a mismeasured or “assigned”
exposure level for each subject by choosing a random
sample of 100 subjects from each job category and cal-
culating the arithmetic mean of their true exposure lev-
el. This mean exposure level was then assigned to all the
subjects in that job category. Finally, we calculated a
mismeasured or “assigned” cumulative exposure for each
subject by multiplying their mismeasured exposure lev-
el by their duration of exposure.

Logistic regression analyses were then conducted us-
ing either the true cumulative exposure or the assigned
cumulative exposure. For either the true or the assigned
cumulative exposure, each simulation was repeated 100
times, and the average regression coefficient and its ob-
served standard error were reported for both true and as-
signed cumulative exposure.

Variations on the basic model

We varied some of the assumptions of the basic model
and conducted further simulations as follows:

1.The exposure level variance was kept constant across
jobs; some results are shown for this scenario.

2. The Cox regression was used instead of logistic re-
gression. We generated exponential survival times, for
which the mean or hazard depended on the true cumula-
tive exposure with a coefficient of 0.6. We then censored
the times using a uniform distribution to determine the
overall frequency of disease occurrence. Cox regressions
were catried out using either the true cumulative expo-
sure or the assigned cumulative exposure. The results
were similar to the logistic model and have not been pre-
sented here.

3. Exposure level was allowed to change over time, de-
creasing 10-fold over a 10-year period via a stepwise
function and then remaining constant. True cumulative
exposure then required summing over a different expo-
sure level for each year a worker was on the job. The
mean exposure level for a sample of 100 workers in each
job was calculated by taking the mean of the cumulative
exposure for each of the 100 workers divided by their
duration in the job. The simulations yielded results simi-
lar to those obtained when exposure was assumed to be
constant over time, and they have not been presented.

4. Disease was changed to be more common (30% prev-
alence); again the same pattern of results was observed,
although the pattern was less pronounced; the results are
not presented.

5. The job-specific geometric mean exposure level with-
in each job was assigned, instead of the job-specific
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arithmetic mean. The results generally yielded regression
coefficients for assigned cumulative exposure which were
higher than those based on the arithmetic mean but which
exhibited the same pattern of biases.

6. Job-specific exposure levels were normally rather than
log-normally distributed. The same overall pattern of bias
resulted, although it was somewhat less pronounced, and
the results have not been presented.

Results

Table 1 gives the job-specific data for cumulative expo-
sure (true and assigned) for a single simulation. The mean
of the assigned cumulative exposure approximates the
mean of the true cumulative exposure (depending on how
well the sample of the exposure level for 100 workers
per job, used to assign exposure level, represented all the
workers in that job). The standard deviation of the as-
signed cumulative exposure was less than the true cu-
mulative exposure, as expected.

Figure 1 shows the average regression coefficients for
the cumulative exposure that resulted from the job-spe-
cific mean being assigned to all the subjects when the
variation of exposure remained constant across jobs,
across different standard deviations of duration. Three
different standard deviations of the true exposure level
were used (0.1, 0.5, 0.9) for these simulations. Regard-
less of the standard deviation of the duration or the stand-
ard deviation of the exposure level used, there was little
bias (departure from the true regression coefficient of 0.6)
in the estimated exposure coefficients for the cumulative
exposure. This result would have been predicted from the
earlier work by Deddens & Hornung (7). Assigning the
geometric mean rather than the arithmetic mean also re-
sulted in an unbiased regression coefficient for this sce-
nario (results not shown).

Figure 2 shows the average regression coefficient
which resulted from the mean exposure level being as-
signed to all the workers in a specific job when the stand-
ard deviation of the job-specific exposure-level increased
proportionally with the job-specific mean. Data are
shown for a range of different standard deviations of

Tahle 1. Mean job-specific true and assigned cumulative expo-
sure for one simulation (30 000 workers, 10 000 per job, stand-
ard deviation of duration of exposure 0.7).

True cumulative exposure  Assigned cumulative exposure

Mean SD Mean SD
Job 1 0.4958  0.9186 0.4858 07259
Job 2 10062 1.8607 0.9360 12378
Job 3 14805  2.7583 16417 2.2810
Scand J Work Environ Health 2000, vol 26, no 1 39
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duration. Five different exposure-level standard devia- deviation {eg, 20.5), the regression coefficient is upward-
tions were used for the lowest exposed job (0.1, 0.3, 0.5, ly biased when the standard deviation of duration is low,
0.7, and 0.9), and in each case they increased proportion- and it is downwardly biased when it is high. The bias
ately for the other 2 jobs (eg, when 0.3 was used for job can be substantial (eg, 30—50%).

1, 0.6 and 0.9 were used for jobs 2 and 3). This figure Table 2 gives partial results for the scenario used in

shows that, when exposure level has a high standard | figure 2, for an exposure-level standard deviation of 0.7
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for the lowest exposed job and for 2 different standard
deviations of duration. Table 2 shows that use of the true
exposure in fact resulted in the expected regression co-
efficient for cumulative exposure (0.6). The same pat-
tern seen in figure 2 is apparent; when the standard devi-
ation of duration is small, assignment of the arithmetic
mean gives overestimates, while the opposite is true
when duration has a large standard deviation. Table 2
also shows that the assignment of the geometric mean of
the exposure level resulted in higher estimates than did
the assignment of the arithmetic mean. These estimates
also tended to decrease as the standard deviation of ex-
posure increased.

The estimated cumulative exposure-response trends
in figure 2 are assumed (by the logistic model used) to

Steenland et al

be linear in the log odds. Figures 3 and 4 show the shape
of the exposure-response curve (log odds versus cumu-
lative exposure) via restricted cubic spline curves [5 knots
at 5th, 25th, 50th, 75th, and 95th percentiles of exposure
(11)]. The spline for figure 3, when duration had a low
variance of duration, shows a consistently overestimated
exposure-response trend, conforming to a linear model.
However, the spline for figure 4, with a high duration
variance, shows that the assignment of the job-specific
means resulted in overestimates of risk in the middle
range of cumulative exposure and underestimates of risk
at the highest cumulative exposures; the overall linear
estimate was biased downwards. The fact that measure-
ment error led to an underestimation of risk in figure 4
in the highest range of cumulative exposure may be part

Table 2. Log-linear model. Disease as a function of cumulative exposure, log-normal exposure within job, 3 jobs with 10 000 peocple,

100 replications each simuiation.?

Duration True exposure Exposure coefficients
Mean SD True exposure Assigned exposure Assigned exposure
Mean SD Arithmetic SD Geometric SD
mean mean
Mean 0.5, SD 0.1 1 0.7¢ 0.602 0.002 0.778 0.009 0.945 0.011
2 144 . - - - - -
3 21 e . . . . .
Mean 0.5, SD 0.7 1 0.7¢ 0.599 0.001 0.523 0.003 0.636 0.004
3 2.1¢

@ Simulations conducted via logistic regression, with B,=-4.0, B,=0.6. ° Observed standard error of the mean regression coefficient across the 100

simulations. ¢Job 1. ¢Job2. ¢Job 1.

LOG ODDS
3 R

T T T T T T T T T T T T T

0 1 2 3 4

TP T T T T

T 7T TTTTTTT T

4] 7 8

CUMULATIVE EXPOSURE

—~~ LINEAR
— TRUE RESPONSE

MODEL

3 JOBS AND 10000 WORKERS PER JOB
STD(EXPOSURE)= .7 * MEAN(EXPOSURE)
MEAN DURATION=5

— - SPLINE

Figure 3. Linear and spline esti-
mates of exposure response after
the assignment of job-specific
means to workers in different jobs
(standard deviation = 0.1 for dura-
tion).
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of the reason why relative risks in occupational studies
sometimes tend to tail off at the highest exposures (eg,
see references 11, 12). The distortion of the true shape
of the exposure-response curve, as seen in figure 4 (eg,
from linear to curved), resulting from “multiplicative”
error (ie, error proportional to the mean) when the expo-
sure level is lognormal, has been noted previously by oth-
er authors (4).

Discussion

The assignment of job-specific mean exposure levels to
all workers in a job, resulting in Berkson-type errors, is
common in occupational epidemiology. With log-linear
models, as seen in figure 1, the assignment of the arith-
metic mean resulted in an unbiased estimate of the ex-
posure-response trend (for cumulative exposure) when
the variation of the exposure level was constant across
jobs. However, we believe this situation is uncommon
in occupational settings. For the more common scenario
in which the variance of exposure level across jobs in-
creases with job-specific means, regression coefficients
estimating cumulative exposure-response trends were bi-
ased upwards when the variance of duration was low.
This result would be expected based on the work of Ded-
dens & Hornung (7), in which upward bias was shown

42 Scand J Work Environ Health 2000, vol 26, no 1
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Figure 4. Linear and spline esti-
mates of exposure response after
the assignment of job-specific
means to workers in different jobs
{standard deviation = 0.9 for dura-
tion).

when duration was not taken into account in the expo-
sure metric (ie, only exposure level was considered); this
is tantamount to using cumulative exposure but assum-
ing that duration is the same for all workers (ie, the var-
iance of duaration is (). As the variation in duration in-
creased in our data, however, the estimated regression
coefficients based on assigned exposure level were bi-
ased downwards. When the standard deviation of dura-
tion was approximately equal to its mean, the regression
coefficients for cumulative exposure were approximate-
Iy unbiased.

To investigate the distribution of duration further, we
considered 3 reasonably typical industrial cohorts (diox-
in, industrial sand, ethylene oxide). We found mean du-
rations of employment of 12, 8, and 9 years, while the
respective standard deviations were 12, 10, and 9 years.
This result would suggest that, in actual data, the stand-
ard deviation of duration may not differ greatly from its
mean. In these 3 cohorts the distribution of duration was
skewed, so that the data indeed approximated a log-nor-
mal distribution, as was assumed in our simulation.

It should be noted that the effects of measurement
error, as observed in this work, were negligible when the
standard deviation of the job-specific exposure level was
low (ie, less than half the job-specific mean). However,
some empirical data suggest that this is rarely the case.
Job-specific exposure data on silica in industrial sand
plants, for example, suggests, on the average, that the job-
specific standard deviation of exposure level is
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approximately equal to its mean (8). Occupational and
environmental exposure data often show wide variance.

It should also be noted that our results are largely in-
dependent of scale. For example, we could have used a
larger mean duration in our simulations, which would
have resulted in a larger curulative dose, which in turn
would result in a smaller regression coefficient for cu-
mulative dose if it is assumed that the percentage of dis-
eased subjects in our study population was kept constant.

As noted earlier, the same pattern of results holds
when we allowed exposure level to change over time,
when we used a Cox regression instead of a logistic re-
gression, when we allowed a higher disease prevalence
(30% instead of 5%), when we assumed exposure to be
normally distributed instead of log-normally distributed,
and when we assigned the geometric mean instead of the
arithmetic mean (although we do not recommend the geo-
metric mean, as the estimated regression coefficients are
consistently higher than with the arithmetic mean, with-
out any reduction in bias). While the same patterns re-
sulted, they were less pronounced when exposure was
normally distributed or when the disease was less rare.

Despite the preceding sensitivity analyses in which
we varied some of the parameters of our simulations, we
note that our work is directly applicable only to the con-
ditions we simulated, and these conditions were neces-
sarily limited. Simulations are only as good as their as-
sumptions (13). Our assumptions refer to a restricted re-
gion of the total “parameter space” which could be con-
sidered. Nonetheless we have tried to use reasonable as-
sumptions which conform to actual data seen in occupa-
tional studies.

In summary, estimated trends of disease risk by cu-
mulative exposure can be biased in studies in which data
from a sample of workers are used to assign exposure
levels to all workers. The direction of the bias depends
on the variation of the duration, with increasing varia-
tion leading to downward bias. Fortunately, it appears
that, under reasonably common conditions in which the
duration of exposure is approximately equal to its stand-
ard deviation, regression coefficients are approximately
unbiased. The underlying reasons for these patterns re-
main unclear; the distribution of cumulative exposure, as

Steenland et al

simulated in this report, is complex, and theoretical re-
sults to support the observed pattern are likely to be hard
to derive.
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